Dnmt1 deficiency leads to enhanced microsatellite instability in mouse embryonic stem cells.
نویسندگان
چکیده
DNA hypomethylation is frequently seen in cancer and imparts genomic instability in mouse models and some tissue culture systems. However, the effects of genomic DNA hypomethylation on mutation rates are still elusive. We have developed a model system to analyze the effects of DNA methyltransferase 1 (Dnmt1) deficiency on DNA mismatch repair (MMR) in mouse embryonic stem (ES) cells. We generated sibling ES cell clones with and without functional Dnmt1 expression, containing a stable reporter gene that allowed us to measure the slippage rate at a mononucleotide repeat. We found that Dnmt1 deficiency led to a 7-fold increase in the microsatellite slippage rate. Interestingly, the region flanking the mononucleotide repeat was unmethylated regardless of Dnmt1 status, suggesting that it is not the local levels of DNA methylation that direct the increase in microsatellite instability (MSI). The enhanced MSI was associated with higher levels of histone H3 acetylation and lower MeCP2 binding at regions near the assayed microsatellite, suggesting that Dnmt1 loss may decrease MMR efficiency by modifying chromatin structure.
منابع مشابه
DNMT1 deficiency triggers mismatch repair defects in human cells through depletion of repair protein levels in a process involving the DNA damage response.
DNA methyltransferase 1 (DNMT1) maintains methylation at CpG dinucleotides, important for transcriptional silencing at many loci. It is also implicated in stabilizing repeat sequences: DNMT1 deficiency causes microsatellite instability in mouse embryonic stem cells, but it is unclear how this occurs, how repeats lacking CpG become unstable and whether the effect is confined to stem cells. To ad...
متن کاملتمایز سلولهای بنیادی جنینی موش به رده لنفوئیدی با فاکتورهای رشد مشخص
Background and Aim: Embryonic stem cells are identified with two unique characteristics. First, they can be maintained and expanded as pure populations of undifferentiated cells, a characteristic which is known as self renewal aspect of embryonic stem cells. Second, these cells can give rise to all body cell types. In the current study, we used a feeder-free condition to differentiate mouse emb...
متن کاملCo-culture of Mouse Embryonic Stem Cells with Sertoli Cells Promote in vitro Generation of Germ Cells
Objective(s): Sertoli cells support in vivo germ cell production; but, its exact mechanism has not been well understood. The present study was designed to analyze the effect of Sertoli cells in differentiation of mouse embryonic stem cells (mESCs) to germ cells. Materials and Methods: A fusion construct composed of a Stra8 gene promoter and the coding region of enhanced green fluorescence p...
متن کاملEvaluation of Chronotropic Properties of Mouse Embryonic Stem Cells-Derived Cardiomyocytes After Fibroblast Growth Factor Treatment
Purpose: We investigated the effect of (bFGF) (basic-Fibroblast Growth Factor) on the differentiation of divided cardiomyocytes from mouse embryonic stem cells (ES) and their pharmacological properties. Materials and Methods: The mouse embryonic stem cells (Royan B1) were cultured as 800 cells per 20µl of a hanging drop. After two days, ES cells in each drop aggregated to form embryoid bodies ...
متن کاملHuman embryonic stem cells show low-grade microsatellite instability.
It is well known that human embryonic stem cells (hESCs) frequently acquire recurrent chromosomal abnormalities, very reminiscent of those found in cancerous cells. Given the parallels between cancer and stem cell biology, we set out to investigate the occurrence of a common form of genome instability in tumors, namely microsatellite instability (MSI), in hESCs. MSI is caused by a deficiency in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 32 19 شماره
صفحات -
تاریخ انتشار 2004